Quiz 3 Solution
Express $\frac{d}{2 \sigma}$ in the form of $\frac{E_{b}}{N_{0}}$ for the following constellation:

Assume equiprobable message.

$$
\begin{aligned}
& E_{s}=\frac{1}{6}\left(2 \times\left(\frac{d}{2}\right)^{2}+4 \times\left(\left(\frac{d}{2}\right)^{2}+d^{2}\right)\right)=\frac{1}{6}\left(\Gamma \frac{d^{2}}{4}+\frac{2}{2} \times \frac{5 d^{2}}{2}\right)=\frac{11}{12} d^{2} \\
& E_{b}=\frac{1}{\log _{2} 6} \frac{11}{12} d^{2} \Rightarrow d^{2}=\frac{12}{11}\left(\log _{2} 6\right) E_{b} \\
& \frac{d}{2 \sigma}=\sqrt{\frac{d^{2}}{4 \sigma^{2}}}=\sqrt{\frac{d^{2}}{2 N_{0}}}=\sqrt{\frac{6}{11}\left(\log _{2} 6\right) \frac{E_{b}}{N_{0}}}
\end{aligned}
$$

Therefore, for the constellation above,

$$
P(\varepsilon)=\frac{7}{3} q-\frac{4}{3} q^{2} \text { where } q=Q\left(\sqrt{\frac{6}{11}\left(\log _{2} 6\right) \frac{E_{6}}{N_{0}}}\right)
$$

